
Python3 Constraint

Programming

Tutorial /Manual

Nov.30.2020 Sugawara Systems

Introduction

2

We describe how to write constraints using Python 3.

When should we use Python3?

3

We can write most constraints using GUI. So, we recommend using GUI unless the

following cases.

■There are constraints we can not describe using GUI.

■We want to switch the constraints on/off dynamically.

■Dynamic constraints will make the descriptions more maintainable.

A workflow without Python3

4

■A typical workflow without Python 3

looks like the one on the right.

■The solution engine receives a GUI

description and outputs the solution.

GUI description

Solution Engine

Outputs the

solution

A workflow using Python3

5

■We describe constraints on Python3,

utilizing the set of information of GUI.

We can write rules on minimum efforts

since GUI already has the necessary

settings.

■You can add constraints with add-ons. On

the other hand, you can also easily detach

them by a checkbox.

■If needed, we can add a post solution
operation using shift and task solution.

GUI description

Solution Engine

Outputs

solution

Python

Constraints

＋

Settings

information

sets

Python

Post Operation

Python Source Edit

6

■Constraints →Constraints by Python→Source

■Source is the only page where users can write Python code.

■When you click Set, your project will import the source.

Python Entire Source

7

■This page is also Read Only.

■The description is GUI-generated

information , followed your written

source.

■ Python interpreter in the solver

interprets and executes the code on

this page.

■The purpose of the page is to show

the error position and for your

reference to GUI objects.

Python Post Entire Source

8

■This page is also Read Only.

■The description is GUI-generated

information and the solution

information, followed your written

source.

■def post_main() is a dedicated

function for post-processing. If you

write it in the source, python will

automatically invoke post_main() as its

main routine after you solve the

problem.

How to run Python

9

■First, declare import sc3.

■Click on Set.

■Check the Use Language Constraints checkbox.

■Click on Solve.

Python Version

10

Supports Python 3.68 and above.

GUI Notes on Py thon

■In the GUI description, we use almost all of the entries as python variables. In some

cases, we should modify the variable name to address the parser error in Python. The

solver renames them automatically to keep as much of the original character as possible.

■However, please keep this in mind for an easier reading of python code.

Followings are examples of the error (letters).

‘*-()[].’

‘1variable’ is illegal, variable1 is legal.

■Of course, you can ignore the rule above if you have no plan to use Python.

Hello World!

12

■Load , and Solve the project hello_python_world.nurse3.

■You should see a Hello... in the right pane.

12

python_tutorial1

■Load the project Python_tutorial1.nurse3

■Use sc3.print() for displaying value of variables. It can only display string, so you

need to convert integer to a string using str().

12

Where is AllDays and daydef?

■Click on Python Entire Source, which is output from Solution Solver.

■You can find AllDays by Find Dialog. Also you can find 1D array daydef.

Log of python_tutorial1

15

■See the generated log. You can see the python interpreter displays the sc3.print

data, and then the nominal solving process will start.

Generating python property file finished.
Compiling constraints..

Day index0 is 2020-10-27.
Day index1 is 2020-10-28.
Day index2 is 2020-10-29.
…

Algorithm 1 Solving Process Started..

GetShiftVar python_tutorial2

16

■Each shift is OneHot encoded, which results that

A_Member_in_All*AllDays*Shifts per day binary variables exist in the search space.

You can call any shift variable per the following format.

v=sc3.GetShiftVar(person,day,shift);

where person/day are zero-based index and shift is zero-based index or string.

■The most important thing to remember is the activated shift is at least one and at

most one per day per staff. For example, if you assert any Shift variable, the other
variables on the same person and the day automatically become de-asserted.

AddHard python_tutorial2

17

■The following format is a function to add a hard constraint.

sc3.AddHard(v,string)

■v is the shift variable obtained by GetShiftVar or the output variable of

And/Or/Not/SeqExpr/SeqComp.

Python_tutorial2 result

18

■You can see all staff could be given a Paid_Holiday on Mondays.

python_tutorial2_error

19

■We made every Monday a Paid_Holiday Shift using Python. In contrast, We put the

Day_Shift on Monday on the Schedule. Since Python constraints and the Schedule are

contradictory and both are hard-constraints, we have no answer.

■Look at the right pane; you'll see Red Marked portions.

python_tutorial2_error error position

20

■ Dbl-Clicking on here brings you the error position as below.

■Dbl-Clicking on here brings

you the error position as right.

python_tutorial2_error AddHard note

21

■Please note the added string information at AddHard is a clue for what is conflicting.

We strongly recommend you set it up because you'll have a lot of trouble without it.

■The recommended format will be as follows.

1D-Array Keyword＋SPACE+staff/day_words

2D-Array Keyword+staff/day_words+SPACE+staff/day_worsds

And python_tutorial3

22

■The last three lines are all Valid and equivalent constraints.

Or python_tutorial4

23

■The last three lines are all Valid and equivalent constraints.

And Or Not : python_tutorial5

24

■Consider the problem we have four Paid_Holidays out of five Mondays using only

logical operators.

■Since the problem requires Σ~Paid_Holiday equals to 1. We have the following two

constraints.

1) Σ~Paid_Holiday >=1;

2) 2) Of all the combinations that take two from five, ~Paid_Holiday and

~Paid_Holiday are prohibited. i.e. Σ~Paid_Holiday<=1;

■Enumerating all the combinations of 5 to 2 that we can take is a pain, but we can leave

that to Python Itertools, which will enumerate all the combinations for us.

python_tutorial5 result

25

■We were able to achieve the specification that only one of the five Mondays is not a
Paid_Holiday.

python_tutorial6 Cardinal Constraints

26

■The constraints on inequalities are called cardinal constraints. In python_tutorial6, Xi =

Paid_Holiday

Σ~Xi<=4 AND Σ~Xi>=4

using only the logical expressions And,Or,Not.

■However, the cardinal constraint has its own dedicated function.

sc3.SeqLE(min,max,List)

The List must be List of the shift/task variable, or the output of And/Or/Not, etc.

sudoku

27

■We used cardinality constraints for the sudoku problem.

■The solver tries to get two solutions in this project, but there is only one solution, so we

get a message that the solution2.txt does not exist.

AddSoft python_tutorial7

28

■The following is the format of adding a soft constraint.

sc3.AddSoft(variable ,string ,soft_level)

,where soft_level must be a constant(1-7).

■Since the first time you add a soft level, a checkbox in solving parameters is empty;

you need to select the checkbox so that the constraint becomes effective.

SeqError python_tutorial8

29

■The allowable_errors is the

parameter of how many of these

errors are allowed. Be careful to

be set the number because over

the limit should cause a hard error.

■The following is the format when we use cardinality constraint as a soft constraint.

sc3.SeqError(min,max,allowable_errors,list)

■Please note we use sc3.SeqLE for hard constraints instead of the above.

■Let's look at the result of the project. We should have set it to 4 Paid_Holiday, but the reason it's

not is that the we entered DayShifts as hard scheduled entries. A Hard constraint is always the

winner for any soft rules.

SeqError python_tutorial9

30

■ When we make the weights of the schedule constraints larger than the cardinality constraints,

there are no errors in the cardinality constraints. Instead, we should have a changed schedule due to

weaker weight. In this way, we can change the priority without modifying the Python source code.

SeqComp python_tutorial10

31

■sc3.SeqComp(X,Y) is a function that returns True if ΣX(i)==ΣY(i).

When combined with AddHard, you can constraint ΣX(i) equals to ΣY(i).

The number of
Saturday Visit-
Shift equals to
the number of
Half-Shift for the
month.

The number of
Sunday Visit-Shift
is equal to the
number of Sub-
Shift for the
month.

python_tutorial13 cardinality constraint per staff

32

■You can retrieve any staff property that consists of only numbers as a Python
Dictionary.
■For example ,we set the number of DayShifts per each staff based on the
dictionary on Python as figure below.

python_tutorial11_error

33

■ This is an example of reading scheduled shifts and showing an error before
the solver issues the hard error.

GetTaskVar sudoku_task

34

■Use GetTaskVar instead of

GetShiftVar in phase mode.

■The example is sudoku_task

■The format is as follows.

GetTaskVar(person,day

,phase,task)

Post Processing

35

■After solution generation, for example, you should write the following
when you want to output a formatted solution.
■The example is Task_Projects/task_import1.nurse3.
Define def post_main(): in the source with the following order.

Constraints dynamic on/off

36

■We can turn on/off a constraint
or a constraint group dynamically.

■The timing for turning on/off is
right after the parsing in the
solver

GUI

Parse

Output

solution

Python

＋

Sets

Solving Process

Turn

on/off

Solver

Constraint group on/off python_tutorial12

37

■sc3.ConstraintEnable(name) # name is groupname or groupname . Item_name

■sc3.ConstraintEnable(name, enable)

Constraint group on/off with soft level python_tutorial12_soft_level

38

■sc3.ConstraintEnable(name, enable,soft_level)

■sc3.SetSoftLeveltraintEnable(soft_level,type, enable,weight,allowable_errors)

type:’row’,’column’,’planned’

■If you define a new level in ConstraintEnable, you should also call SetSoftLevel

because the solver doesn't know what weight should use on the constraint.

Python Constraint Function Summary

39

Format Description Can be used

in

Return

SeqLE SeqLE(min,max,List) Hard Cardinality AddHard

SeqError SeqError(min,max,allowable

erros,List)

Soft Cardinality AddSoft

SeqComp SeqComp(ListA,ListB) ΣListA==ΣListB １bit

SeqExpr SeqExpr(min,max,Type、List) Type 0:ΣList <=max

1:ΣList>=min

2:Σlist<=max &&

Σlist>=min

１bit

